图像质量的评价准则
作者:网络转载 发布时间:[ 2015/2/5 13:57:00 ] 推荐标签:质量管理 软件测试管理
图像质量评价准则
图像质量评价准则主要分为两类:客观评价准则 与 主观评价准则。
一:主观评价准则
-------------------------------------
主观评价方法:选择一组评价者为待评图像进行打分,对这些打分进行平均获得一个主观评价分。
Subjective quality assessment can be applied by visual perception or mean opinion score (MOS), which has been used in ITU-T p.910, a standard in multimedia services. Visual perception is predicated on the observers’ perception without a numerical quantification. MOS is defined as the average of the quality values ranging from1 to 5that are obtained from observers.
计算方法:
缺点:
耗费人力,不是自动的,不利于调整参数。
优点:
根据人眼的感知,直观并能较精确地评价图片的质量。
=============================================================================================================
二:客观评价准则
-------------------------------------
客观评价方法:对重建图像与原始图像的差别进行定量的计算。
方法主要分为两类:相对整个图像 、 与主观视觉感知相关。
相对整个图像
相对整个图像的方法有:1:峰值信噪比PSNR(Peak Signal to Noise Ratio),2:结构相似性SSIM(structural similarity) ,3:均方误差MSE(mean square error),4: RMSE(root mean square error),5: corss-correlation ;
------------------------------------------------------------
PSNR:
优点:算法简单,检查的速度快。
缺点:呈现的差异值与人的主观感受不成比例。
-------------------------------------------------------------
SSIM:
优点:改进了PSNR的缺点。
缺点:结构相似性指标有其限制,对于影像出现位移、缩放、旋转(皆属于非结构性的失真)的情况无法有效的运作。为解决此问题,另已发展出在小波域进行运算的结构相似性指标,称作复小波结构相似性指标[8](英文:complex wavelet SSIM,CW-SSIM)。
计算公式与原理:参考维基百科 词条 结构相似性
源码:opencv源码可参考 opencv教程 : opencv的视频输入和相似度测量
--------------------------------------------------------------------------------------------------
--------------------------------------------------------------
MSE | PSNR | SNR | MAE 的 计算方法:
---------------------------------------------------
相关推荐
更新发布
功能测试和接口测试的区别
2023/3/23 14:23:39如何写好测试用例文档
2023/3/22 16:17:39常用的选择回归测试的方式有哪些?
2022/6/14 16:14:27测试流程中需要重点把关几个过程?
2021/10/18 15:37:44性能测试的七种方法
2021/9/17 15:19:29全链路压测优化思路
2021/9/14 15:42:25性能测试流程浅谈
2021/5/28 17:25:47常见的APP性能测试指标
2021/5/8 17:01:11