高可用性系统在大众点评的实践与经验
作者:网络转载 发布时间:[ 2016/3/4 14:21:34 ] 推荐标签:软件测试 可用性测试
降低发布风险
严格的发布流程
目前点评的发布都是开发自己负责,通过平台自己完成的。上线的流程,发布的常规流程模板如下:
灰度机制
服务器发布是分批的,按照10%、30%、50%、的发布,开发人员通过观察监控系统的曲线及系统的日志,确定业务是否正常。
线上的流量灰度机制,重要功能上线能有按照某种流量灰度上线能力。
可回滚是标配,好有坏情况的预案。
时间要快:缩短故障的恢复时间
如果目标要保证全年不出故障或者出了故障在5分钟之内能解决,要对5分钟进行充分的使用。5分钟应该这样拆解:1分钟发现故障,3分钟定位故障出现在哪个服务,再加上后面的恢复时间。是整个时间的分解,目前我们系统大致能做到前面2步,离整体5个9的目标还有差距,因为恢复的速度跟架构的设计,信息在开发、运维、DBA之间的沟通速度及工具能力,及处理问题人员的本身能力有关。
生命值:
持续关注线上运行情况
熟悉并感知系统变化,要快要熟,熟能生巧,所以要关注线上运营情况。
了解应用所在的网络、服务器性能、存储、数据库等系统指标。
能监控应用的执行状态,熟悉应用自己的QPS、响应时间、可用性指标,并对依赖的上下游的流量情况同样熟悉。
保证系统稳定吞吐
系统如果能做好流量控制、容错,保证稳定的吞吐,能保证大部分场景的可用,也能很快地消化高峰流量,避免出现故障,产生流量的多次高峰。
故障时
快速的发现机制
告警的移动化
系统可用性的告警应该全部用微信、短信这种能保证找到人的通信机制。
告警的实时化
目前我们只能做到1分钟左右告警。
监控的可视化
我们系统目前的要求是1分钟发现故障,3分钟定位故障。这需要做好监控的可视化,在所有关键service里面的方法层面打点,然后做成监控曲线,不然3分钟定位到具体是哪个地方出问题,比较困难。点评的监控系统CAT能很好的提供这些指标变化,我们系统在这些基础上也做了一些更实时的能力,比如订单系统QPS是秒级的监控曲线。
有效的恢复机制
比如运维的四板斧:回滚、重启、扩容、下服务器。在系统不是很复杂、流量不是很高的情况下,这能解决问题,但大流量的时候很难了,所以要更多地从流量控制、降级体验方面下功夫。
几点经验
珍惜每次真实高峰流量,建立高峰期流量模型。
因为平常的压力测试很难覆盖到各种情况,而线上的真实流量能如实地反映出系统的瓶颈,能较真实地评估出应用、数据库等在高峰期的表现。
珍惜每次线上故障复盘,上一层楼看问题,下一层楼解决问题。
线上出问题后,要有一套方法论来分析,比如常见的“5W”,连续多问几个为什么,然后系统思考解决方案,再逐渐落地。
可用性不只是技术问题。
系统初期:以开发为主;
系统中期:开发+DBA+运维为主;
系统后期:技术+产品+运维+DBA。
系统较简单、量较小时,开发同学能比较容易地定位问题并较容易解决问题。
当系统进入较复杂的中期时,需要跟运维、数据库的同学一起来看系统的瓶颈。
当系统进入复杂的后期时,系统在任何时候都要考虑不可用的时候如何提供柔性体验,这需要从产品角度来思考。
单点和发布是可用性大的敌人。
可用性要解决的核心问题是单点,比如常见的手段:垂直拆分、水平拆分、灰度发布;单机到主备、集群、异地容灾等等。
另外,系统发布也是引起系统故障的关键点,比如常见的系统发布、数据库维护等其他引起系统结构变化的操作。
相关推荐
更新发布
功能测试和接口测试的区别
2023/3/23 14:23:39如何写好测试用例文档
2023/3/22 16:17:39常用的选择回归测试的方式有哪些?
2022/6/14 16:14:27测试流程中需要重点把关几个过程?
2021/10/18 15:37:44性能测试的七种方法
2021/9/17 15:19:29全链路压测优化思路
2021/9/14 15:42:25性能测试流程浅谈
2021/5/28 17:25:47常见的APP性能测试指标
2021/5/8 17:01:11