缩短学习曲线并获得更大的价值 大数据的六大规则
作者:陈俊勋 发布时间:[ 2017/7/5 10:50:10 ] 推荐标签:大数据 微软
4、先追求正确的时刻获取数据,而不是实时数据。
另外,建议你先彻底了解你的公司目前如何组织数据,然后把数字数据融入现有流程。始终目标是如何匹配数据传化成见解和洞察。如果实时数据没创造业务价值,你何必投入资源实现呢?而且你的公司将省很多钱,因为海量的实时数据肯定不便宜!
数据采集过后,你的公司需要任何人工处理吗?如果答案是需要,那么你不需要实时数据,你需要正确的时刻获取数据。如果你有智能或规则驱动的自动化系统,那么你可考虑获取实时数据的“原材料”。
5、数据质量差,但还是得做业务决定。
我们的目标应该是尽可能地采集、处理和存储数据。这流程可能不完善,但数字数据仍然具有价值。因为相对于任何的传统来源,数字数据让你建立完善的用户画面与传化。
数字数据质量确实有优化的空间,如何处理视频或眼花缭乱的社会媒体平台。但市场不会等你做这些优化,所以开始凭数据做小决定。记住,即使这些决定将是革命性的,因为数字与传统数据集在好多公司从来没集合!随着经验的累计和了解数据的限制,你将可以做更多附加值的决定。
6、消除噪音比找到信号更有价值。
到目前为止,我们查询的目标是从所有噪音摸索有价值的信号。以掌握正确的信号,前提包括清晰的研究问题、数据规模较小、数据集更完整。前美国国防部长DonaldRumsfeld所谓的已知的已知(Known Knowns)和已知的未知(Known Unknowns)。Rumsfeld采用这概念讨论反恐情报的噪音,但也适用于分析和研究(请查看以下模式),做明智的业务决定。当然,“未知”的象限需要你的公司累计经验才可以比较进行有效探讨。
已知的已知模式(来自TextOre)
以建立数据灯塔和面临大数据时代,你必须知道如何消除海量数据量的噪音,才可能开始寻找信号。
六个简单的规则,让你们革命者遵循,确保,革命成功。
这六条规则正在解决首席执行官的问题,而不是CIO或CTO。因此,所思考的的问题较宏观。此外,讨论大数据之前,我建议先建立扎实的基础,通过大数据思考并搭建数据灯塔。
你觉得以上的框架有价值吗?它会驱使你改变对大数据的处理方式吗?关于以上的规则,哪一条规则实用?你从经验中分享的大的数据建议是什么?期待回音!
本文内容不用于商业目的,如涉及知识产权问题,请权利人联系SPASVO小编(021-61079698-8054),我们将立即处理,马上删除。
相关推荐
更新发布
功能测试和接口测试的区别
2023/3/23 14:23:39如何写好测试用例文档
2023/3/22 16:17:39常用的选择回归测试的方式有哪些?
2022/6/14 16:14:27测试流程中需要重点把关几个过程?
2021/10/18 15:37:44性能测试的七种方法
2021/9/17 15:19:29全链路压测优化思路
2021/9/14 15:42:25性能测试流程浅谈
2021/5/28 17:25:47常见的APP性能测试指标
2021/5/8 17:01:11热门文章
常见的移动App Bug??崩溃的测试用例设计如何用Jmeter做压力测试QC使用说明APP压力测试入门教程移动app测试中的主要问题jenkins+testng+ant+webdriver持续集成测试使用JMeter进行HTTP负载测试Selenium 2.0 WebDriver 使用指南