缩短学习曲线并获得更大的价值 大数据的六大规则
作者:陈俊勋 发布时间:[ 2017/7/5 10:50:10 ] 推荐标签:大数据 微软
“大数据”是近两年来各界热议的话题之一。那么大数据究竟是什么?
据我个人理解,大数据包括结构化数据(Structured Data)和非结构化数据(Unstructured Data)。数据来源包括传统交易如企业ERP、财务、CRM系统和潜在海量的数字来源如网页、移动应用用户行为、教育视频点播和媒体资源。
由于“大数据”的热点集中和可以处理海量数据如大规模并行计算(massively parallel computing)、云计算、hadoop和MapReduce。因此,Oracle、IBM、微软、SAP和其他大厂家目前共同在推动相关对话。但光谈技术解决不了中国非500强企业所面临的行业竞争和混乱。这些企业已了解转型的必要性和紧迫性,关注的话题包含集合传统数据和数字数据产生的洞察和如何形成研究问题。当然非500强企业也了解B744引擎放不进拖拉机,所以偏向先建立扎实的数据分析基础,优化用户体验。
我也坚信大数据确实带来新业务机遇,但目前更关注数据如何驱动企业实际价值。本文将分享Countly与客户合作所获取的经验。
大数据的六大规则。
从Countly累计的经验,我整理了一些规则适合“小”和“大”的数据领域。当你开始你的大数据路途,这些规则将会帮你缩短学习曲线,并获得更大的价值:
1、在早期阶段,先建立数据灯塔再考虑大数据。
好好规划你的数据项目。在初期,建议“失败快,但往前跌”(fail faster while failing forward)的规划。不要花24个月搭建海量的大数据环境,后期再发现这是你大的错误。
你可以相当快开始采集数据、建立非完善的数据仓库和做数据分析。这种组建可称为数据灯塔,先关注三大趋势:
发现以前未知的走势或关键驱动因素
摸索异常的记录
理解数据中的相关性
覆盖率有可能不完善,但获取一些立竿见影的成果和指引后期的扩展。关键是一开始得考虑规划扩展性和灵活性的选择。
2、建立大数据思考。
Avinash Kaushik,一位数字分析的专家,倡导采用框架的数字营销计量模型确保数据分析项目针对公司重要的业务(请查看Avinash所整理的以下例子)。此外,你必须与高层有共识,不需太细,但在一页面总结明确的业务目标与实现。
数字营销核心指标
当你通过数据灯塔掌握这些数据,你所获取的见解将带给你惊喜。你对企业的影响将是巨大的,因为在很多企业还没集合传统数据和数字数据。
3、如果大数据思考比大数据技术更重要,那么在技术方面我们又能做些什么呢?
当你的公司使用免费的用户分析平台,如Google Analytics或友盟,你的数据将是产品,为厂家建立附加值(如谷歌Adsense)。由于虚拟商业模式抄袭是市场隆重的赞美,自部署或在私人化的部署越主流以保障数据安全和灵活融合数据。
让我们继续讨论数字数据解决方案。由于你需要评估成本、二次开发灵活性、可扩展性、数据所有权和性能,可考虑开放的平台,如Countly用户行为分析平台和其他推荐数据可视化和其他实用的Javascript软件。
相关推荐
更新发布
功能测试和接口测试的区别
2023/3/23 14:23:39如何写好测试用例文档
2023/3/22 16:17:39常用的选择回归测试的方式有哪些?
2022/6/14 16:14:27测试流程中需要重点把关几个过程?
2021/10/18 15:37:44性能测试的七种方法
2021/9/17 15:19:29全链路压测优化思路
2021/9/14 15:42:25性能测试流程浅谈
2021/5/28 17:25:47常见的APP性能测试指标
2021/5/8 17:01:11