Java的并发采用的是共享内存模型(而非消息传递模型),线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信。多个线程之间是不能直接传递数据交互的,它们之间的交互只能通过共享变量来实现
  同步是显式进行的。程序员必须显式指定某个方法或某段代码需要在线程之间互斥执行。
  1、多线程通信
  1.1 内存模型

  Java线程之间的通信由Java内存模型(JMM)控制,JMM决定一个线程对共享变量的写入何时对另一个线程可见。
  从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在,它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。Java内存模型的抽象示意图如下:

  线程间通信的步骤:
  首先,线程A把本地内存A中更新过的共享变量刷新到主内存中去。然后,线程B到主内存中去读取线程A之前已更新过的共享变量。

  本地内存A和B有主内存中共享变量x的副本。假设初始时,这三个内存中的x值都为0。线程A在执行时,把更新后的x值(假设值为1)临时存放在自己的本地内存A中。当线程A和线程B需要通信时(如何激发?--隐式),线程A首先会把自己本地内存中修改后的x值刷新到主内存中,此时主内存中的x值变为了1。随后,线程B到主内存中去读取线程A更新后的x值,此时线程B的本地内存的x值也变为了1。
  从整体来看,这两个步骤实质上是线程A在向线程B发送消息,而且这个通信过程必须要经过主内存。JMM通过控制主内存与每个线程的本地内存之间的交互,来为java程序员提供内存可见性保证。
  1.2 可见性、有序性
  例如在多个线程之间共享了Count类的一个对象,这个对象是被创建在主内存(堆内存)中,每个线程都有自己的本地内存(线程栈),工作内存存储了主内存Count对象的一个副本,当线程操作Count对象时,首先从主内存复制Count对象到工作内存中,然后执行代码count.count(),改变了num值,后用工作内存Count刷新主内存Count。
  当一个对象在多个内存中都存在副本时,如果一个内存修改了共享变量,其它线程也应该能够看到被修改后的值,此为可见性。
  一个运算赋值操作并不是一个原子性操作,多个线程执行时,CPU对线程的调度是随机的,我们不知道当前程序被执行到哪步切换到了下一个线程,一个经典的例子是银行汇款问题,一个银行账户存款100,这时一个人从该账户取10元,同时另一个人向该账户汇10元,那么余额应该还是100。那么此时可能发生这种情况,A线程负责取款,B线程负责汇款,A从主内存读到100,B从主内存读到100,A执行减10操作,并将数据刷新到主内存,这时主内存数据100-10=90,而B内存执行加10操作,并将数据刷新到主内存,后主内存数据100+10=110,显然这是一个严重的问题,我们要保证A线程和B线程有序执行,先取款后汇款或者先汇款后取款,此为有序性。
  1.3 synchronized与volatile
  一个线程执行互斥代码过程如下:
  获得同步锁;清空工作内存;从主内存拷贝对象副本到工作内存;
  执行代码(计算或者输出等);
  刷新主内存数据;
  释放同步锁。
  所以,synchronized既保证了多线程的并发有序性,又保证了多线程的内存可见性。
  volatile是第二种Java多线程同步的手段,根据JLS的说法,一个变量可以被volatile修饰,在这种情况下内存模型确保所有线程可以看到一致的变量值
  [java]view plaincopy
  print?
  classTest{ staticvolatileinti=0,j=0; staticvoidone(){ i++; j++; } staticvoidtwo(){ System.out.println("i="+i+"j="+j); } }
  加上volatile可以将共享变量i和j的改变直接响应到主内存中,这样保证了i和j的值可以保持一致,然而我们不能保证执行two方法的线程是在i和j执行到什么程度获取到的,所以volatile可以保证内存可见性,不能保证并发有序性。
  如果没有volatile,则代码执行过程如下:
  将变量i从主内存拷贝到工作内存;
  刷新主内存数据;
  改变i的值;
  将变量j从主内存拷贝到工作内存;
  刷新主内存数据;
  改变j的值;