继上篇文章介绍完了HashMap,这篇文章开始介绍Map系列另一个比较重要的类TreeMap。 大家也许能感觉到,网络上介绍HashMap的文章比较多,但是介绍TreeMap反而不那么多,这里面是有原因:一方面HashMap的使用场景比较多;二是相对于HashMap来说,TreeMap所用到的数据结构更为复杂。 废话不多说,进入正题。
  签名(signature)
  public class TreeMap<K,V>
  extends AbstractMap<K,V>
  implements NavigableMap<K,V>, Cloneable, java.io.Serializable
  可以看到,相比HashMap来说,TreeMap多继承了一个接口NavigableMap,也是这个接口,决定了TreeMap与HashMap的不同:
  HashMap的key是无序的,TreeMap的key是有序的
  接口NavigableMap
  首先看下NavigableMap的签名
  public interface NavigableMap<K,V> extends SortedMap<K,V>
  发现NavigableMap继承了SortedMap,再看SortedMap的签名
  SortedMap
  public interface SortedMap<K,V> extends Map<K,V>
  SortedMap像其名字那样,说明这个Map是有序的。这个顺序一般是指由Comparable接口提供的keys的自然序(natural ordering),或者也可以在创建SortedMap实例时,指定一个Comparator来决定。 当我们在用集合视角(collection views,与HashMap一样,也是由entrySet、keySet与values方法提供)来迭代(iterate)一个SortedMap实例时会体现出key的顺序。 这里引申下关于Comparable与Comparator的区别(参考这里):
  Comparable一般表示类的自然序,比如定义一个Student类,学号为默认排序
  Comparator一般表示类在某种场合下的特殊分类,需要定制化排序。比如现在想按照Student类的age来排序
  插入SortedMap中的key的类类都必须继承Comparable类(或指定一个comparator),这样才能确定如何比较(通过k1.compareTo(k2)或comparator.compare(k1, k2))两个key,否则,在插入时,会报ClassCastException的异常。 此为,SortedMap中key的顺序性应该与equals方法保持一致。也是说k1.compareTo(k2)或comparator.compare(k1, k2)为true时,k1.equals(k2)也应该为true。 介绍完了SortedMap,再来回到我们的NavigableMap上面来。 NavigableMap是JDK1.6新增的,在SortedMap的基础上,增加了一些“导航方法”(navigation methods)来返回与搜索目标近的元素。例如下面这些方法:
  lowerEntry,返回所有比给定Map.Entry小的元素
  floorEntry,返回所有比给定Map.Entry小或相等的元素
  ceilingEntry,返回所有比给定Map.Entry大或相等的元素
  higherEntry,返回所有比给定Map.Entry大的元素
  设计理念(design concept)
  红黑树(Red–black tree)
  TreeMap是用红黑树作为基础实现的,红黑树是一种二叉搜索树,让我们在一起回忆下二叉搜索树的一些性质
  二叉搜索树
  先看看二叉搜索树(binary search tree,BST)长什么样呢?

  二叉搜索树
  相信大家对这个图都不陌生,关键点是:
  左子树的值小于根节点,右子树的值大于根节点。
  二叉搜索树的优势在于每进行一次判断是能将问题的规模减少一半,所以如果二叉搜索树是平衡的话,查找元素的时间复杂度为log(n),也是树的高度。 我这里想到一个比较严肃的问题,如果说二叉搜索树将问题规模减少了一半,那么三叉搜索树不将问题规模减少了三分之二,这不是更好嘛,以此类推,我们还可以有四叉搜索树,五叉搜索树……对于更一般的情况:
  n个元素,K叉树搜索树的K为多少时效率是好的?K=2时吗?
  K 叉搜索树
  如果大家按照我上面分析,很可能也陷入一个误区,是
  三叉搜索树在将问题规模减少三分之二时,所需比较操作的次数是两次(二叉搜索树再将问题规模减少一半时,只需要一次比较操作)
  我们不能把这两次给忽略了,对于更一般的情况:
  n个元素,K叉树搜索树需要的平均比较次数为k*log(n/k)。
  对于极端情况k=n时,K叉树转化为了线性表了,复杂度也是O(n)了,如果用数学角度来解这个问题,相当于:
  n为固定值时,k取何值时,k*log(n/k)的取值小?
  k*log(n/k)根据对数的运算规则可以转化为ln(n)*k/ln(k),ln(n)为常数,所以相当于取k/ln(k)的极小值。这个问题对于大一刚学高数的人来说再简单不过了,我们这里直接看结果
  当k=e时,k/ln(k)取小值。
  自然数e的取值大约为2.718左右,可以看到二叉树基本上是这样优解了。在Nodejs的REPL中进行下面的操作
  function foo(k) {return k/Math.log(k);}
  > foo(2)
  2.8853900817779268
  > foo(3)
  2.730717679880512
  > foo(4)
  2.8853900817779268
  > foo(5)
  3.1066746727980594