近需要用 C++ 做一些数值计算,之前一直采用Matlab 混合编程的方式处理矩阵运算,非常麻烦,直到发现了 Eigen 库,简直相见恨晚,好用哭了。 Eigen 是一个基于C++模板的线性代数库,直接将库下载后放在项目目录下,然后包含头文件能使用,非常方便。此外,Eigen的接口清晰,稳定高效。的问题是之前一直用 Matlab,对 Eigen 的 API 接口不太熟悉,如果能有 Eigen 和 Matlab 对应的说明想必是极好的,终于功夫不负有心人,让我找到了,原文在这里,不过排版有些混乱,我将其重新整理了一下,方便日后查询。
  Eigen 矩阵定义
#include <Eigen/Dense>
Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B;         // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major.
Matrix3f P, Q, R;                     // 3x3 float matrix.
Vector3f x, y, z;                     // 3x1 float matrix.
RowVector3f a, b, c;                  // 1x3 float matrix.
VectorXd v;                           // Dynamic column vector of doubles
// Eigen          // Matlab           // comments
x.size()          // length(x)        // vector size
C.rows()          // size(C,1)        // number of rows
C.cols()          // size(C,2)        // number of columns
x(i)              // x(i+1)           // Matlab is 1-based
C(i,j)            // C(i+1,j+1)       //
  Eigen 基础使用
// Basic usage
// Eigen        // Matlab           // comments
x.size()        // length(x)        // vector size
C.rows()        // size(C,1)        // number of rows
C.cols()        // size(C,2)        // number of columns
x(i)            // x(i+1)           // Matlab is 1-based
C(i, j)         // C(i+1,j+1)       //
A.resize(4, 4);   // Runtime error if assertions are on.
B.resize(4, 9);   // Runtime error if assertions are on.
A.resize(3, 3);   // Ok; size didn't change.
B.resize(3, 9);   // Ok; only dynamic cols changed.
A << 1, 2, 3,     // Initialize A. The elements can also be
4, 5, 6,     // matrices, which are stacked along cols
7, 8, 9;     // and then the rows are stacked.
B << A, A, A;     // B is three horizontally stacked A's.
A.fill(10);       // Fill A with all 10's.
  Eigen 特殊矩阵生成
// Eigen                            // Matlab
MatrixXd::Identity(rows,cols)       // eye(rows,cols)
C.setIdentity(rows,cols)            // C = eye(rows,cols)
MatrixXd::Zero(rows,cols)           // zeros(rows,cols)
C.setZero(rows,cols)                // C = ones(rows,cols)
MatrixXd::Ones(rows,cols)           // ones(rows,cols)
C.setOnes(rows,cols)                // C = ones(rows,cols)
MatrixXd::Random(rows,cols)         // rand(rows,cols)*2-1        // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols)              // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high)  // linspace(low,high,size)'
v.setLinSpaced(size,low,high)       // v = linspace(low,high,size)'
  Eigen 矩阵分块
// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen                           // Matlab
x.head(n)                          // x(1:n)
x.head<n>()                        // x(1:n)
x.tail(n)                          // x(end - n + 1: end)
x.tail<n>()                        // x(end - n + 1: end)
x.segment(i, n)                    // x(i+1 : i+n)
x.segment<n>(i)                    // x(i+1 : i+n)
P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols)
P.row(i)                           // P(i+1, :)
P.col(j)                           // P(:, j+1)
P.leftCols<cols>()                 // P(:, 1:cols)
P.leftCols(cols)                   // P(:, 1:cols)
P.middleCols<cols>(j)              // P(:, j+1:j+cols)
P.middleCols(j, cols)              // P(:, j+1:j+cols)
P.rightCols<cols>()                // P(:, end-cols+1:end)
P.rightCols(cols)                  // P(:, end-cols+1:end)
P.topRows<rows>()                  // P(1:rows, :)
P.topRows(rows)                    // P(1:rows, :)
P.middleRows<rows>(i)              // P(i+1:i+rows, :)
P.middleRows(i, rows)              // P(i+1:i+rows, :)
P.bottomRows<rows>()               // P(end-rows+1:end, :)
P.bottomRows(rows)                 // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)
P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end)