浅析Linux初始化init系统(2):UpStart
作者:网络转载 发布时间:[ 2015/10/20 13:46:02 ] 推荐标签:操作系统
近年来,Linux 系统的 init 进程经历了两次重大的演进,传统的 sysvinit 已经淡出历史舞台,新系统 UpStart 和 systemd 各有特点,而越来越多的 Linux 发行版采纳了 systemd。本文简要介绍了这三种 init 系统的使用和原理,每个 Linux 系统管理员和系统软件开发者都应该了解它们,以便更好地管理系统和开发应用。本文是系列的第二部分,主要讲述 UpStart 的特点和使用。
Upstart 简介
假如您使用的 Linux 发行版是 Ubuntu,很可能会发现在您的计算机上找不到/etc/inittab 文件了,这是因为 Ubuntu 使用了一种被称为 upstart 的新型 init系统。
开发 Upstart 的缘由
大约在 2006 年或者更早的时候, Ubuntu 开发人员试图将 Linux 安装在笔记本电脑上。在这期间技术人员发现经典的 sysvinit 存在一些问题:它不适合笔记本环境。这促使程序员 Scott James Remnant 着手开发 upstart。 当 Linux 内核进入 2.6 时代时,内核功能有了很多新的更新。新特性使得 Linux 不仅是一款的服务器操作系统,也可以被用于桌面系统,甚至嵌入式设备。桌面系统或便携式设备的一个特点是经常重启,而且要频繁地使用硬件热插拔技术。在现代计算机系统中,硬件繁多、接口有限,人们并非将所有设备都始终连接在计算机上,比如 U 盘平时并不连接电脑,使用时才插入 USB 插口。因此,当系统上电启动时,一些外设可能并没有连接。而是在启动后当需要的时候才连接这些设备。在 2.6 内核支持下,一旦新外设连接到系统,内核便可以自动实时地发现它们,并初始化这些设备,进而使用它们。这为便携式设备用户提供了很大的灵活性。 可是这些特性为 sysvinit 带来了一些挑战。当系统初始化时,需要被初始化的设备并没有连接到系统上;比如打印机。为了管理打印任务,系统需要启动 CUPS 等服务,而如果打印机没有接入系统的情况下,启动这些服务是一种浪费。Sysvinit 没有办法处理这类需求,它必须一次性把所有可能用到的服务都启动起来,即使打印机并没有连接到系统,CUPS 服务也必须启动。 还有网络共享盘的挂载问题。在/etc/fstab 中,可以指定系统自动挂载一个网络盘,比如 NFS,或者 iSCSI 设备。在本文的第一部分 sysvinit 的简介中可以看到,sysvinit 分析/etc/fstab 挂载文件系统这个步骤是在网络启动之前。可是如果网络没有启动,NFS 或者 iSCSI 都不可访问,当然也无法进行挂载操作。Sysvinit 采用 netdev 的方式来解决这个问题,即/etc/fstab 发现 netdev 属性挂载点的时候,不尝试挂载它,在网络初始化并使能之后,还有一个专门的 netfs 服务来挂载所有这些网络盘。这是一个不得已的补救方法,给管理员带来不便。部分新手管理员甚至从来也没有听说过 netdev 选项,因此经常成为系统管理的一个陷阱。 针对以上种种情况,Ubuntu 开发人员在评估了当时的几个可选 init 系统之后,决定重新设计和开发一个全新的 init 系统,即 UpStart。UpStart 基于事件机制,比如 U 盘插入 USB 接口后,udev 得到内核通知,发现该设备,这是一个新的事件。UpStart 在感知到该事件之后触发相应的等待任务,比如处理/etc/fstab 中存在的挂载点。采用这种事件驱动的模式,upstart 完美地解决了即插即用设备带来的新问题。 此外,采用事件驱动机制也带来了一些其它有益的变化,比如加快了系统启动时间。sysvinit 运行时是同步阻塞的。一个脚本运行的时候,后续脚本必须等待。这意味着所有的初始化步骤都是串行执行的,而实际上很多服务彼此并不相关,完全可以并行启动,从而减小系统的启动时间。在 Linux 大量应用于服务器的时代,系统启动时间也许还不那么重要;然而对于桌面系统和便携式设备,启动时间的长短对用户体验影响很大。此外云计算等新的 Server 端技术也往往需要单个设备可以更加快速地启动。 UpStart 满足了这些需求,目前不仅桌面系统 Ubuntu 采用了 UpStart,甚至企业级服务器级的 RHEL 也默认采用 UpStart 来替换 sysvinit 作为 init 系统。
Upstart 的特点
UpStart 解决了之前提到的 sysvinit 的缺点。采用事件驱动模型,UpStart 可以:
更快地启动系统
当新硬件被发现时动态启动服务
硬件被拔除时动态停止服务
这些特点使得 UpStart 可以很好地应用在桌面或者便携式系统中,处理这些系统中的动态硬件插拔特性。
Upstart 概念和术语
Upstart 的基本概念和设计清晰明确。UpStart 主要的概念是 job 和 event。Job 是一个工作单元,用来完成一件工作,比如启动一个后台服务,或者运行一个配置命令。每个 Job 都等待一个或多个事件,一旦事件发生,upstart 触发该 job 完成相应的工作。
Job
Job 是一个工作的单元,一个任务或者一个服务。可以理解为 sysvinit 中的一个服务脚本。有三种类型的工作:
task job;
service job;
abstract job;
task job 代表在一定时间内会执行完毕的任务,比如删除一个文件; service job 代表后台服务进程,比如 apache httpd。这里进程一般不会退出,一旦开始运行成为一个后台精灵进程,由 init 进程管理,如果这类进程退出,由 init 进程重新启动,它们只能由 init 进程发送信号停止。它们的停止一般也是由于所依赖的停止事件而触发的,不过 upstart 也提供命令行工具,让管理人员手动停止某个服务; Abstract job 仅由 upstart 内部使用,仅对理解 upstart 内部机理有所帮助。我们不用关心它。 除了以上的分类之外,还有另一种工作(Job)分类方法。Upstart 不仅可以用来为整个系统的初始化服务,也可以为每个用户会话(session)的初始化服务。系统的初始化任务叫做 system job,比如挂载文件系统的任务是一个 system job;用户会话的初始化服务叫做 session job。
Job 生命周期
Upstart 为每个工作都维护一个生命周期。一般来说,工作有开始,运行和结束这几种状态。为了更精细地描述工作的变化,Upstart 还引入了一些其它的状态。比如开始有开始之前(pre-start),即将开始(starting)和已经开始了(started)几种不同的状态,这样可以更加精确地描述工作的当前状态。 工作从某种初始状态开始,逐渐变化,或许要经历其它几种不同的状态,终进入另外一种状态,形成一个状态机。在这个过程中,当工作的状态即将发生变化的时候,init 进程会发出相应的事件(event)。
表 1.Upstart 中 Job 的可能状态
图 1 展示了 Job 的状态机。
图 1. Job’s life cycle
image003 其中有四个状态会引起 init 进程发送相应的事件,表明该工作的相应变化:
Starting
Started
Stopping
Stopped
而其它的状态变化不会发出事件。那么我们接下来来看看事件的详细含义吧。
事件 Event
顾名思义,Event 是一个事件。事件在 upstart 中以通知消息的形式具体存在。一旦某个事件发生了,Upstart 向整个系统发送一个消息。没有任何手段阻止事件消息被 upstart 的其它部分知晓,也是说,事件一旦发生,整个 upstart 系统中所有工作和其它的事件都会得到通知。 Event 可以分为三类: signal,methods 或者 hooks。 Signals Signal 事件是非阻塞的,异步的。发送一个信号之后控制权立即返回。 Methods Methods 事件是阻塞的,同步的。 Hooks Hooks 事件是阻塞的,同步的。它介于 Signals 和 Methods 之间,调用发出 Hooks 事件的进程必须等待事件完成才可以得到控制权,但不检查事件是否成功。 事件是个非常抽象的概念,下面我罗列出一些常见的事件,希望可以帮助您进一步了解事件的含义:
系统上电启动,init 进程会发送”start”事件
根文件系统可写时,相应 job 会发送文件系统绪的事件
一个块设备被发现并初始化完成,发送相应的事件
某个文件系统被挂载,发送相应的事件
类似 atd 和 cron,可以在某个时间点,或者周期的时间点发送事件
另外一个 job 开始或结束时,发送相应的事件
一个磁盘文件被修改时,可以发出相应的事件
一个网络设备被发现时,可以发出相应的事件
缺省路由被添加或删除时,可以发出相应的事件
不同的 Linux 发行版对 upstart 有不同的定制和实现,实现和支持的事件也有所不同,可以用man 7 upstart-events来查看事件列表。
Job 和 Event 的相互协作
Upstart 是由事件触发工作运行的一个系统,每一个程序的运行都由其依赖的事件发生而触发的。 系统初始化的过程是在工作和事件的相互协作下完成的,可以大致描述如下:系统初始化时,init 进程开始运行,init 进程自身会发出不同的事件,这些初的事件会触发一些工作运行。每个工作运行过程中会释放不同的事件,这些事件又将触发新的工作运行。如此反复,直到整个系统正常运行起来。 究竟哪些事件会触发某个工作的运行?这是由工作配置文件定义的。
工作配置文件
任何一个工作都是由一个工作配置文件(Job Configuration File)定义的。这个文件是一个文本文件,包含一个或者多个小节(stanza)。每个小节是一个完整的定义模块,定义了工作的一个方面,比如 author 小节定义了工作的作者。工作配置文件存放在/etc/init 下面,是以.conf 作为文件后缀的文件。
清单 1. 一个简单的工作配置文件
#This is a simple demo of Job Configure file
#This line is comment, start with #
#Stanza 1, The author
author “Liu Ming”
#Stanza 2, Description
description “This job only has author and description, so no use, just a demo”
上面的例子不会产生任何作用,一个真正的工作配置文件会包含很多小节,其中比较重要的小节有以下几个: “expect” Stanza Upstart 除了负责系统的启动过程之外,和 SysVinit 一样,Upstart 还提供一系列的管理工具。当系统启动之后,管理员可能还需要进行维护和调整,比如启动或者停止某项系统服务。或者将系统切换到其它的工作状态,比如改变运行级别。本文后续将详细介绍 Upstart 的管理工具的使用。 为了启动,停止,重启和查询某个系统服务。Upstart 需要跟踪该服务所对应的进程。比如 httpd 服务的进程 PID 为 1000。当用户需要查询 httpd 服务是否正常运行时,Upstart 可以利用 ps 命令查询进程 1000,假如它还在正常运行,则表明服务正常。当用户需要停止 httpd 服务时,Upstart 使用 kill 命令终止该进程。为此,Upstart 必须跟踪服务进程的进程号。 部分服务进程为了将自己变成后台精灵进程(daemon),会采用两次派生(fork)的技术,另外一些服务则不会这样做。假如一个服务派生了两次,那么 UpStart 必须采用第二个派生出来的进程号作为服务的 PID。但是,UpStart 本身无法判断服务进程是否会派生两次,为此在定义该服务的工作配置文件中必须写明 expect 小节,告诉 UpStart 进程是否会派生两次。 Expect 有两种,”expect fork”表示进程只会 fork 一次;”expect daemonize”表示进程会 fork 两次。 “exec” Stanza 和”script” Stanza 一个 UpStart 工作一定需要做些什么,可能是运行一条 shell 命令,或者运行一段脚本。用”exec”关键字配置工作需要运行的命令;用”script”关键字定义需要运行的脚本。 清单 2 显示了 exec 和 script 的用法:
清单 2.script 例子
# mountall.conf
description “Mount filesystems on boot”
start on startup
stop on starting rcS
...
script
. /etc/default/rcS
[ -f /forcefsck ] && force_fsck=”--force-fsck”
[ “$FSCKFIX”=”yes” ] && fsck_fix=”--fsck-fix”
...
exec mountall –daemon $force_fsck $fsck_fix
end script
...
这是 mountall 的例子,该工作在系统启动时运行,负责挂载所有的文件系统。该工作需要执行复杂的脚本,由”script”关键字定义;在脚本中,使用了 exec 来执行 mountall 命令。 “start on” Stanza 和”stop on” Stanza “start on”定义了触发工作的所有事件。”start on”的语法很简单,如下所示: start on EVENT [[KEY=]VALUE]… [and|or...] EVENT 表示事件的名字,可以在 start on 中指定多个事件,表示该工作的开始需要依赖多个事件发生。多个事件之间可以用 and 或者 or 组合,”表示全部都必须发生”或者”其中之一发生即可”等不同的依赖条件。除了事件发生之外,工作的启动还可以依赖特定的条件,因此在 start on 的 EVENT 之后,可以用 KEY=VALUE 来表示额外的条件,一般是某个环境变量(KEY)和特定值(VALUE)进行比较。如果只有一个变量,或者变量的顺序已知,则 KEY 可以省略。 “stop on”和”start on”非常类似,只不过是定义工作在什么情况下需要停止。 代码清单 3 是”start on”和”stop on”的一个例子。
清单 3. start on/ stop on 例子
#dbus.conf
description “D-Bus system message bus”
start on local-filesystems
stop on deconfiguring-networking
…
D-Bus 是一个系统消息服务,上面的配置文件表明当系统发出 local-filesystems 事件时启动 D-Bus;当系统发出 deconfiguring-networking 事件时,停止 D-Bus 服务。
相关推荐
更新发布
功能测试和接口测试的区别
2023/3/23 14:23:39如何写好测试用例文档
2023/3/22 16:17:39常用的选择回归测试的方式有哪些?
2022/6/14 16:14:27测试流程中需要重点把关几个过程?
2021/10/18 15:37:44性能测试的七种方法
2021/9/17 15:19:29全链路压测优化思路
2021/9/14 15:42:25性能测试流程浅谈
2021/5/28 17:25:47常见的APP性能测试指标
2021/5/8 17:01:11