性能测试场景设计杂谈
作者:张允庆 发布时间:[ 2017/5/3 15:41:50 ] 推荐标签:性能测试 软件测试 场景
说在前面
提到性能测试,大家想到的是使用工具对应用进行加压,看看应用能承受多少并发,TPS(Transactions Per Second)是多少,交易响应时间是否在接收的范围内。不错,这些都是大家关心的应用的性能指标,也是每个性能测试项目输出的结果。然而,要实现这样的效果却并不是一件简单的事情,因为性能测试是一个十分复杂的系统工程,对测试人员的能力水平提出了更高的要求,需要性能测试人员具备非常全面的知识与技能,能够定位应用的性能瓶颈,并提出适当的优化方案。
通常,要对一个应用进行性能测试需要经历需求调研、环境准备、脚本开发、数据预埋、场景设计、场景执行、应用监控分析、瓶颈定位、瓶颈修复、回归测试、结果整理、输出报告等多个环节。
我们先谈一谈性能测试中的场景设计。
性能测试的场景设计
性能测试的场景如何定义?我们可以理解为功能测试中的用例,即性能测试的场景是性能测试的用例。性能测试的场景是为了要实现特定的测试目标而对应用执行的压测活动。性能测试场景的设计与执行是整个性能测试活动的核心与灵魂,没有完整的场景设计无法达到我们的测试目的,没有合理的场景设计不会发现系统的性能缺陷。我们所开发的测试脚本,所预埋的测试数据都是为了实现特定场景所准备的。
一个性能测试场景包含诸多要素,图1中列出了一些必备的要素,其中测试模型作为测试场景的基础与输入。
图1 性能测试场景的组成要素
下面对每一个要素做一个简单的说明。
测试模型与测试指标
在进行场景设计之前我们应该先确定了本次性能测试的测试指标与测试模型。测试指标和测试模型是进行场景设计的前提和基础,是场景的输入。根据被测系统的类型不同,可能测试指标的类型略有不同。对于在线Web类的应用,测试指标一般包括在线用户数、优并发用户数、大并发用户数、交易平均响应时间、目标TPS等等。对于接口调用类的应用测试指标一般包括目标TPS、平均响应时间等。
测试模型是被测试系统的各交易在线运行时承受的交易数量(或请求数量)的比例而不是并发用户的比例。为什么不是并发用户的比例呢?因为实际的用户的操作具有不确定性,使用测试工具很难模拟真实用户的行为。另外,在进行运营数据分析时很难获取用户的操作行为,而应用的交易记录却很容易通过查询的方式获取。应用实际承受的压力是用户的实际操作请求,在线用户如果没有进行实际操作那么他多将消耗一个连接线程,而应用CPU并不会有什么资源消耗。100个用户平均每个花费10秒下一个订单和10个用户每1秒钟下一个订单对应用带来的压力是一样的。所以,在场景中能用少的并发用户来模拟真实的请求是经济的选择方式。
那么,测试模型到底该如何确定呢?通过需求调研获得。下面介绍的两点是我们常用的调研方式:
对于还未上线运营的新系统,我们一般会让应用的产品经理或负责人给出一个预估的比例;但是这个预估需要我们进行评估,不是随意的。对于一个以提供下单交易为主的应用,通常下单交易是占整个模型的较大比例,如果需求方提出的模型是查询比例较高,那么我们有理由怀疑该模型的合理性。对于这种情况,我们建议选择几个常见的典型的模型来配合需求模型进行场景设计。
对于已上线运营的应用,我们一般会分析实际的交易数据来确定交易比例,这样会更加。例如一个应用对用户提供下单、查询、退款三个交易,我们通过DBA在线查询某日的交易数据总量为200000笔,其中交易下单160000笔、查询38000笔,退款2000笔,由此我们算出各交易的比例是80%、19%、1%,那么这个比例是我们的测试模型。
被测交易或使用的脚本
测试脚本是测试场景的基础,脚本包括对应的测试数据,例如登录所需要的用户名与密码、下单交易可能需要的银行卡号等等。考虑到性能测试是多用户并发的测试,所以需要提前准备相应的测试数据,例如一个场景要对一个含登录操作的交易进行压测,那么我们在场景设计时要考虑可用的用户名与密码数量;又如,要对退款交易做测试,那么需要提前准备好可以退款的数据,这需要提前做好数据预埋准备。
一般情况下,为了方便我们统计TPS,建议一个脚本只包含一个完整的交易,不要把多个交易放到一个脚本中。因为,不同的交易其响应时间会不同,响应时间较长的交易会成为“瓶颈”。另外,我们设计测试场景时需要考虑不同交易的占比,如果多个交易存在同一个脚本里,场景的设计无法实现。
上文提到的“被测交易”是我们压测的对象,也是应用的入口。当然,并不是被测应用的每个交易都需要进行压测,这要视具体情况而定。如果被测应用提供的交易非常多,我们可以考虑只选取占比比较大的交易进行压测,而占比较低的交易可以忽略。
并发用户数量或并发线程数量
并发用户和并发线程其实是同一个概念,只是在不同的性能测试工具中其叫法不同而已。在下文中我们统称“并发用户”。当然,这些用户是虚拟用户,是压力测试工具使用进程或线程来模拟真实用户请求的一种方式。并发用户是每个场景提供不同压力的直接来源,场景不同其需要的并发用户数量可能会不同。那么是什么因素决定一个场景要并发用户的多少呢?主要是被测交易的响应时间和场景的目标TPS。交易响应时间的快慢是决定并发用户数量的主要因素,例如一个应用的某个交易响应时间是50ms,如果要实现100TPS的目标,那么只需5个并发用户即可达到(目标TPS*交易平均响应时间=并发用户量)。如果响应时间是100ms,那么实现同样的TPS需要的并发用户会多一倍。
加压策略
加压策略是并发用户以什么样的“步调”开始对应用发起请求。常用的并发策略有同时加载、指定间隔时间的加载,梯度加载等方式。加压策略的不同主要是模拟生产环境不同的情况,下面分别做简单介绍。
同时加载方式是指所有并发用户在场景启动时同时发起交易请求而不包含任何等待,这样会对被测应用带来突然的压力,用于考察应用在突然加压下的表现是否符合预期。一般有用户突增的业务特点的应用会设计这样的场景,例如,某些抢购系统、铁路售票系统的按时放票功能等。当然,对于那些并发用户较少的场景也可以采用这种用户加载方式。而对于有些应用如果同时加载大量的并发用户可能会出现异常或超时,导致部分并发用户失败。
指定间隔时间的加载方式是我们常用的,这是为了模拟生产的实际情况,一般生产系统接收用户请求都是逐渐增加的,到当日交易的高峰时段达到大。在场景设计时,根据并发用户的多少可以设置适当的增加频率,一般是“多长时间增加多少用户”。例如,每一秒钟增加一个用户、每两秒增加5个用户等等。
梯度加压策略也是我们常用的一种用户加载方式,但是这种方式严格来说应该是一种梯度加压场景。该场景一般是预先设置几个并发用户的梯度,每个梯度执行几分钟,这样可以通过一个场景的执行基本上找到应用的大TPS。在下文场景类型中,我们会详细介绍这种场景。
运行时间
每个类型的场景其执行时间是不同的。表1为大家提供一个参考值。运行时间是不包含用户的加载时间和退出时间的,即全部用户都在执行的这段时间。
表1 各种典型场景运行时间设置
延时方式
延时是上一笔请求完成到下一笔请求发起之间的时间间隔。延时在场景中的作用是为了控制TPS,或者降低当前并发用户数量下的压力。而控制TPS的目的是考察应用在特定压力下是否存在性能问题。在某些性能测试工具中提供了三种延时设置方式:
· 第一种是上一次请求完成后立即发起下一次请求,也是延时为0。
· 第二种是上一次请求完成后间隔指定的时间后再发起下次请求。
· 第三种是在指定时间内完成一次请求,即区间型的延时,这要求我们设置的这个时间要大于交易的响应时间,也是说要保证交易响应时间在我设置的这个时间的区间内,否则不能实现控制TPS的目标。在这个区间内,交易响应时间无论如何变化,只要不突破我的这个大区间,那么TPS是平稳的。
在实际的场景设置中,为了实现的TPS控制目标,我们选用第三种设置方式。通过不断地尝试与调整,终能够达到目标TPS。
用户终止方式
和用户加载方式对应,用户终止方式是场景执行完成后的用户退出方式。一般使用的是“同时退出”和“每隔多少时间退出几个用户”这种方式。这里我们重点介绍一下“同时退出”这种方式。应用在持续一段时间的压力后如果突然压力全部释放了,那么这时的应用在理想情况下应该是怎样的?CPU资源应该从繁忙立即变为空闲,网络传输也大幅降低,磁盘IO降为0等等。不然,那是有某种问题的存在了。这时候需要分析导致资源不能释放的原因。
各种资源的监控方式
资源的监控方式也是我们场景设计时必须考虑的一个必要因素,在场景设计时应该确定每个场景的资源监控策略。这些策略包括监控的对象、使用的监控工具或方法、监控数据采集频率等。监控对象一般是测试环境中所有操作系统资源使用(CPU、内存、磁盘IO、网络吞吐等)、数据库(TOP SQL、数据库锁等待与死锁、缓冲区命中率等)、JVM的运行情况(堆内存垃圾回收、线程状态、数据库连接池使用情况等)等。监控数据采集频率也会因场景执行的时间长度不同而进行适当调整,例如混合容量场景如果执行30分钟,那么采集频率可以为每5秒钟采集一次,共采集360次。但是,考虑到监控要提前启动,所以采集次数可以适当增加一些,这样可以确保整个监控区间大于场景执行区间,也同时监控到了资源使用在压力发起前后的变化情况。对于执行时间较长的场景,我们要适当调整采集间隔和采集次数,例如对于一个执行12小时的稳定性场景,我们可以每50秒采集一次,共采集1000次。
常见的场景类型
单交易基准
一般使用一个用户或一个线程,延时设置为0,对一个交易持续运行10分钟以上。该场景的主要目的是获取单个交易在无压力的情况下的基准响应时间及环境资源使用情况,作为其他场景的参考依据。
单交易负载
单交易负载的场景是为了找到单个交易的优TPS,检测单交易在并发情况下是否存在性能瓶颈。这个优是以什么为衡量标准呢?通常以应用或数据库等系统的CPU使用率不大于70%为标准。为什么是70%?不能更高了吗?通常在生产上运行的应用,如果CPU使用率长期处于高水平那是非常严重的问题,应用的节点随时都可能挂掉。对于生产环境各种资源的使用情况,通常运维部门都会有实时的监控,一般当摸个节点的CPU使用率超过50%时会触发报警,如果长时间处于高负载状态,那么说明应用节点可用资源不足,应该考虑进行节点扩充了。
当然,也并不是什么情况下都需要找到单交易的优TPS,这要分情况来对待。对于被测应用提供的交易比较少的话,可以通过不断测试找到每个交易的优TPS。但是,有的应用提供的交易比较多,这时如果每个交易的优TPS都要找到,那会需要较多的时间来进行测试。
单交易负载的场景具体该如何设计与执行呢?如果你想找出每个交易的优TPS,可以从5个并发用户开始,执行几分钟后再增加5个用户,直到应用CPU使用率超过70%为止。场景的延时设置为0,场景执行前需开启相关监控。该场景用于获取单交易在并发情况下的响应时间与TPS,发现交易本身是否存在并发问题,应用是否会出现错误和异常,响应时间相对单交易基准是否有明显的提高,资源使用率是否在合理的承受范围之内等等。如果应用存在性能缺陷该场景即可发现。
当然,如果你不想测试出每个交易的优TPS,那么单独对每个交易做一次5个并发的负载测试即可。
相关推荐
更新发布
功能测试和接口测试的区别
2023/3/23 14:23:39如何写好测试用例文档
2023/3/22 16:17:39常用的选择回归测试的方式有哪些?
2022/6/14 16:14:27测试流程中需要重点把关几个过程?
2021/10/18 15:37:44性能测试的七种方法
2021/9/17 15:19:29全链路压测优化思路
2021/9/14 15:42:25性能测试流程浅谈
2021/5/28 17:25:47常见的APP性能测试指标
2021/5/8 17:01:11