一、正交表的由来
  拉丁方名称的由来
  古希腊是一个多民族的,国王在检阅臣民时要求每个方队中每行有一个民族代表,每列也要有一个民族的代表。
  数学家在设计方阵时,以每一个拉丁字母表示一个民族,所以设计的方阵称为拉丁方。
  什么是n阶拉丁方?
  用n个不同的拉丁字母排成一个n阶方阵(n<26),如果每行的n个字母均不相同,每列的n个字母均不相同,则称这种方阵为n*n拉丁方或n阶拉丁方。每个字母在任一行、任一列中只出现一次。
  什么是正交拉丁方?
  设有两个n阶的拉丁方,如果将它们叠合在一起,恰好出现n2个不同的有序数对,则称为这两个拉丁方为互相正交的拉丁方,简称正交拉丁方。
  例如:3阶拉丁方

  用数字替代拉丁字母:

  二、正交实验法
  正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。
  日本的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(33)正交表按排实验,只需作9次,按L18(37)正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。
  利用因果图来设计测试用例时,作为输入条件的原因与输出结果之间的因果关系,有时很难从软件需求规格说明中得到。往往因果关系非常庞大,以至于据此因果图而得到的测试用例数目多的惊人,给软件测试带来沉重的负担,为了有效地,合理地减少测试的工时与费用,可利用正交实验设计方法进行测试用例的设计。