用python做测试实现高性能测试工具(1)
作者:网络转载 发布时间:[ 2013/12/31 15:22:22 ] 推荐标签:Python 测试
做过几年开发或者测试开发的人员,时常会觉得很迷茫,新功能的开发或者老功能的维护,基本是在堆代码了, 做过几年测试的朋友也会有类似的想法。性能调优或者性能测试的确很考验人分析问题、解决问题的能力,知识是否全面。本人也是第一次实现高性能的测试工具, 记录下这次diameter协议测试工具的优化过程,供大家一起学习。 有些内容涉及到具体产品,做了些改动或者单独写了测试代码演示。
Python用来开发高性能的测试工具的确有天然的缺陷,性能差还有GIL,无法利用多线程。 但办法总比困难多,那么多大的互联网公司都使用python与实际产品中,总比我们测试的性能要求搞多了。 本文主要讲述在系统设计和架构方面的性能优化,具体算法和一些小细节的优化,请参考 http://blog.csdn.net/powerccna/article/details/8020289
项目背景:
实现个高性能的diameter 测试工具, 接受1000+发送1000,双向要支持到2000条消息每秒。 diameter 协议的源代码是从这里下载的 http://sourceforge.net/projects/pyprotosim/, 这个开源包还支持SMPP, RADIUS, DHCP, LDAP, 而且新增加的协议字段都可以在dictionary配置属性,不需要修改代码,实在是方便。 初始阶段我们为了实现功能,没有怎么考虑性能的问题,很多地方用的是单线程,初始性能只能支持到50 消息。硬件环境: SunFire 4170, 16 核,每核2.4 G
Python性能优化的几个方向:
1. 换python的解析器:常见的python解析器有pysco,pypy, cython, jython, pysco已经对python 2.7不支持了,没有测试,据说跑的很C语言一样快。对pypy, jython做了简单测试,pypy在不同机器上可以提高到5-10倍的样子,Jython虽然可以避免python GIL的问题(因为jython是跑在java虚拟机上的),但测试看来,效率提升很少。
2. 优化代码
3. 改变系统架构,多线程,多进程或者协程
方案1: 换Python解析器
如果换Python解析器能达到性能需求是廉价的方案了,不需要对代码做任何改动。下面代码只是为了说明pypy的效果,单独写的测试代码,在windows下运行的结果。在linux下机器上运行效果会更好些。
#!/usr/bin/env python
#coding=utf-8
import time
def check(num):
a = list(str(num))
b = a[::-1]
if a == b:
return True
return False
def test():
all = xrange(1,10**7)
for i in all:
if check(i):
if check(i**2):
i**2
if __name__ == '__main__':
start=time.time()
test()
print time.time()-start
分别用python和pypy的运行结果
C:Python27python.exeD:/RCC/mp/src/test.py
14.4940001965
C:pypy-2.1pypy.exeD:/RCC/mp/src/test.py
4.37800002098
可以看出来pypy的运行结果效果还是明显的,虽然能提高5倍(linux机器上),50*5, 离2000还差好远。 pypy对python 多线程的支持没有明显效果,这个在后面会提到。
先告一段落,太长了大家看起来累,下一篇文章中将会介绍代码优化部分。
相关推荐
更新发布
功能测试和接口测试的区别
2023/3/23 14:23:39如何写好测试用例文档
2023/3/22 16:17:39常用的选择回归测试的方式有哪些?
2022/6/14 16:14:27测试流程中需要重点把关几个过程?
2021/10/18 15:37:44性能测试的七种方法
2021/9/17 15:19:29全链路压测优化思路
2021/9/14 15:42:25性能测试流程浅谈
2021/5/28 17:25:47常见的APP性能测试指标
2021/5/8 17:01:11